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Abstract

The control of vergence behavior has become an es-
sential component of any active vision system. In this
paper we propose a new fuzzy controller which oper-
ates on a set of correlation measures obtained from a
multiresolution representation of the image. Real-time
experiments have been conducted on a mobile robot en-
dowed with a 8 d.o.f. stereo head. We present encour-
aging results over different real world scenarios.

1 Introduction

Eye movements are an essential aspect of visual
perception in biological visual systems. The ability to
stabilize the retina with regard to the outside world
is crucial to effective vision. Many vertebrates are en-
dowed with gaze stabilization and gaze shifting mech-
anisms that guide them in their interaction with their
dynamical environment [1]. As in living organisms,
visual system in robots should incorporate motor ca-
pacities to achieve effective adaptation of their sensors
in relation to the changing world.

In recent years, computer vision community has
begun taking interest in the role of action in visual
perception. Among other approaches, active vision
[2][3] and animate vision [4] have opened new research
lines emphasizing the importance of action in visual
perception.

The main motivation of our work is the exploration
of dynamic relationships between perceptual and mo-
tor processes. Qur approach is founded on the idea
that a robot and its environment form a dynamical
system where balanced and unbalanced situations al-
ternate. This changing situation should affect the
robot behavior in such a way that perceptual and mo-
tor processes co-operate to reach an effective interac-
tion with the environment. From this view, we are
working on the modeling of oculomotor processes in a
mobile robot endowed with a stereo head. In this pa-
per, we focus on the development of a vergence control
system.

Several techniques have been proposed dealing with
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the vergence control problem [5][6][7]. Our approach
mainly differs from them in the use of fuzzy reasoning
to drive the control. This technique provides a simple
way of describing the system behavior, allowing a real-
time implementation with low computational cost.

In 1963 Zadeh points out that the precise defined
mathematics of functions, points, sets, etc. difficult
the study of biological systems. He suggests ”the
mathematics of fuzzy or cloudy quantities which are
not describable in terms of probability distributions”
[8]- In 1965 introduces the fuzzy subset concept [9],
allowing Mamdani and Assilian to implement, in 1975,
the first fuzzy controller [10]. Since then there have
been numerous fuzzy control theory and application
studies [11].

To design a fuzzy logic based control it is neces-
sary to define a complete map of input/output vari-
ables. This map consists on a set of fuzzy conditional
rules implemented via a linguistic reasoning about the
causal relation between one input fuzzy partition re-
gion and its logical/causal output. In the particular
case of a PI type controller the rules have the following
typical form: IF (e is PH) AND (Ae is NM) THEN
Auw is PL, we can read so: if the error is positive high
and the derivative of the error is negative medium,
then the derivative of the control signal must be pos-
itive low. For the rule system to be complete it is
needed to design NM rules, being N the number of
fuzzy sets of the fuzzy partition over e, and M the
number of fuzzy sets of the fuzzy partition over Ae.
From this it follows that the number of rules grows ex-
ponentially with the number of variable inputs. Some
mathematical strategies have been proposed to reduce
this complexity, as for example decomposing the sys-
tem in subsystems of lower dimensionality [12].

We propose in this work a new strategy to cope
with this problem. The final controller will have a
3N order linear complexity. To do this two fuzzy rule
subsystems must be designed: the first one of N rules
whose output is the amplitude of the control signal,
and the second one of 2N rules whose output is the
sign of the control signal.



The paper is organized as follows. Section 2 de-
scribes the general strategy employed for our vergence
system. In section 3, the proposed controller is pre-
sented in detail. The outcomes obtained from several
real experiments are shown in section 4. Finally, sec-
tion 5 summarizes the main conclusions of this paper.

2 Vergence Control

Vergence movements are crucial in human vision.
They allow fixating regions of interest in the visual
space, providing a mechanism for tracking visual tar-
gets as they vary in distance from the observer [1].

A vergence control system must provide a stable
binocular fixation and a smooth and accurate response
to changes in the environment. The design of a con-
trol strategy for such a system has to take into ac-
count these two factors in the definition of the input
signals that will drive the system behavior. Binocular
fixation can be quantified using a similarity measure
of the images captured by the cameras. Changes in
the environment can be detected by changes in time
of that similarity measure. Therefore vergence con-
trol can be guided by two input signals: a similarity
measure and its derivative.

To compute the degree of similarity between the
two images, the normalized correlation coefficient [13]
has been used. The main property of this index is its
invariance to changes in brightness between the two
cameras, which makes it suitable for our application.
This correlation coefficient is defined by the following
expression:
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where I, and I; are the images to be compared and
and I; represent their mean gray level values.

The coefficient of equation 1 takes values in the
rank [0, 1], where a correlation value of 1 indicates the
equality of the compared images. To exploit the com-
plete rank of this coefficient, once the measure is ob-
tained, it is normalized by the expression of equation
2, being ¢pin and ¢pq; the minimum and maximum
correlation values estimated from previous measures.
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The function of vergence movements is the fixation
of a target in a central subregion (called fovea in bio-
logical vision) of both image planes. Hence, vergence
control can be treated as a problem of maximization
of the correlation coefficient measured over a central
window of the two images. Now then, the right size
of that central window is dependent on the properties

of the visual world, which makes it necessary the con-
trol of a new parameter: the size of the correlation
window. Our proposal for this problem is based on
the use of multiresolutional image decomposition [14].
The main idea of this approach is selecting a resolution
level for the correlation window, instead of controlling
its size. This method requires the formation of a hier-
archical structure composed by subimages of fixed size
extracted from the original image at different scales.
Figure 1 shows this idea.
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Figure 1: Multiscale structure formation

This multiscale scheme allows extracting informa-
tion of the binocular fixation at different extents of
the visual space. It gives the possibility of contrasting
the correlation values of the different levels, provid-
ing a mechanism for estimating accurately the good-
ness of the current vergence position. To exploit the
features of this scheme, each level must act accord-
ing to a global measure of correlation. Our studies
have been centered on a selection method based on
the mean value of the correlation coefficients of ev-
ery level. This global index determines which level is
the most suitable for guiding the control taking into
account the following remarks:

e High levels are less sensitive to small changes of
vergence, providing a smoother correlation func-
tion than low levels (figure 2). It makes them
suitable for low mean correlation values, since
they allow avoiding local maxima that may ap-
pear in the correlation function of low levels.

e Low levels present higher values than subsequent
levels at the global maximum of their correlation
functions (figure 2). They give more precise in-
formation about the right vergence position and
hence they must act for high mean correlation
values.

From these remarks, the proposed selection
method has been design to associate low mean
correlation values to high levels of the multiscale
structure and high mean values to low levels. Once
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Figure 2: Correlation value at different vergence an-
gles obtained from a real scene. Dark lines correspond
to low levels of the multiscale structure and light lines
to high levels

the current level has been selected, the correla-
tion coefficient (referred to as c¢) and correlation
derivative (labeled as Ac) for that level act as the
input variables of the system. These signals are
then used by the controller to produce appropri-
ate changes (Af) in the vergence angle 6 (figure 3).

Left Image Multiscale Left Structure Normalized Level
e Correlation Leve
Head Structure Right Structure Correlation .
Right Image Selection
Construction Computation
o(k) Ok +1)
e(k)
Ad(k)
Controller
Ac(k)

Figure 3: Vergence system scheme

3 The Controller

Conventional control theory is based on the con-
struction of a mathematical model of the target sys-
tem from the observation of their characteristics. For
our application, such a mathematical model is very
difficult to articulate because of the variability of the
visual world. On the other hand, fuzzy systems have
the ability to realize a complex nonlinear input-output
relation through multiple simple input-output rela-
tions, supplying a simpler way of describing the sys-
tem behavior. Exploiting the advantages of this kind
of systems, we propose a fuzzy vergence controller,
structured as it is shown in figure 4.

The proposed system computes changes in the cur-
rent vergence angle (3) as result of the product of two
signals, a and s (4). The first signal is the amplitude
of the vergence change, i.e. it indicates how much the
current vergence angle should be modified to reach
the target position. The other one is a sign signal
which provides the direction of the movement (con-
vergent or divergent). This signal is obtained dynam-
ically through the expression of equation 5, being Js

(k) Amplitude a(k)

Fuzzy
Controller A6(k)

Sien ss(k) s(k)

Ac(k) Fuzzy *
= Controller
Delay
s(k—1)

Figure 4: Vergence controller scheme

another signal that indicates the necessity of change
in the direction of the movement.

Ok +1) =6(k) + Ab(k) (3)
AO(k) = a(k) * s(k) 4)
s(k) = ds(k) * s(k —1) (5)

Both amplitude (a) and change in sign (ds) signals
are modeled by two fuzzy controllers. Their designs
require the definition of a set of fuzzy rules and the
assignment of a control value (consequent) to each re-
sulting rule. To allow a smooth control, each fuzzy
set has been designed to overlap adjacent areas at
a certain degree. Qutputs of both controllers have
been determined applying the simplified fuzzy reason-
ing method [15]. Next subsections detail these design
steps for the two fuzzy controllers of our vergence sys-
tem.

3.1 The Amplitude Fuzzy Controller

The amplitude of the signal A# is a function of
the current correlation value. Therefore, the differ-
ent fuzzy rules (C;) acting in the amplitude controller
have to be defined according to a set of fuzzy values
of the variable ¢(k). Fuzzy sets C; have been designed
of triangular type as figure 5 shows, where ¢; follows
the relation of equation 6, with ¢; = 0, ¢y = 1 and
k. > 0.

¢j =¢j—1 +ke(cj—1—cj—2) (6)

The design of the consequent parts, i.e. the selec-
tion of a control value associated to each rule area,
has been carried out under the assumption that the
higher the correlation value is, the closer the current
position is from the target. Thus, the output of each
rule has been chosen taking into account that its value
has to be lower than the output value of the preceding
rule and higher than the output associated to the fol-
lowing one. Moreover, if the current correlation value
is high, the system should not modify the vergence
position, since the target has been reached. This situ-
ation has to be expressed assigning an output value of
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Figure 5: Fuzzy sets for the variable ¢

0 to the last rule. From these observations, we define
the control output of each rule in the following way,
being N the total number of rules:

IF ¢is C; THEN a = q; (j = 1..N)

where a; follows the relation a; = aj_1 + ka(a;—1 —
aj_g) with k, € [0, ].), ap=1,any =0

To compute the final control output, each rule out-
put a; is weighted with its membership value h¢;.
Hence, the final output a(k) is obtained as:

a(k) = AMAX Z hc,'(c(k))ai (7)
i=1..N
being Aprax the maximum amplitude allowed for the
change in the vergence position.

3.2 The Sign Fuzzy Controller

Appropriate changes in the direction of vergence
movements can be determined by changes in the cor-
relation value (Ac). In fact, if Ac is negative, it can
be deduced that the system is moving away from the
target position, which should induce a change in the
current, direction. However, depending on the current
correlation value, a negative value of Ac¢ can be inter-
preted as a jump from a local maximum of the correla-
tion function. If this situation is detected, the system
should maintain the direction of the movement, since
the preceding position is not the target position. Ac-
cording to this second idea, the control of changes in
the sign of the signal A@ requires information about
the state of two variables, the correlation coefficient
(¢) and its variation in time (Ac). From this remark,
the set of rules acting in the sign fuzzy controller and
their associated outputs have been design in the fol-
lowing way:

IF (C is CJ) and (AC is _Djl) THEN (58j1 =-1

IF (C is CJ) and (AC is ng) THEN (SSjQ =1

Fuzzy sets Dj; and Djy are of trapezoidal type as
figure 6 shows, where d; follows the relation d; =
dj_l + kd(dj_l — dj_z) with dg = —1, dy = 0,
kq € [0, 1)

From the membership value of ¢ (hg;) and Ac

(hpij) to each rule, the final control output is ob-
tained by the following expression:

ds(k) = sign( Z Z hcihpijosij) (8)
i=1..N j=1,2

where sign(z) is defined as: sign(z) = 1if z > 0,
sign(z) = —-1if £ <0
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Figure 6: Fuzzy sets for the variable Ac

4 Experimental Results

The proposed vergence system has been proved in
a mobile robot endowed with a stereo vision head (fig-
ure 7). The vision platform consists of a three degrees
of freedom binocular head with digital vision sensors
(Sony DFW-VL500). On the mobile platform, it has
been placed a double rack containing the control hard-
ware and a PC mainboard that runs the system soft-
ware.

Figure 7: Robot used to carry out the experiments

To show the performance of the proposed vergence
system at different situations, several real experiments
are described in the next sections. In all the experi-
ments, five fuzzy sets have been used for the correla-
tion coefficient and values of 2/3, 1/2 and 1/2 have
been chosen for k., k, and kg. Also, the multiscale
structure has been constructed using four levels.

4.1 Vergence on a Motionless Target

The aim of this experiment is to test the stability
of the system when no external changes occur. The



results obtained are shown in figures 8 and 9. The
evolution of the system during several frames is de-
picted in the graph of figure 8. The three curves plot-
ted show the correlation coefficient of the active level
(black line), the mean correlation value of the mul-
tiscale structure (dotted line) and the vergence an-
gle normalized between 0 and 1 (gray line). Figure
9 shows the multiscale structure extracted from right
and left images at initial frame (two first rows of im-
ages) and at frame 40 (two last rows of images).

From the curve of the vergence angle, it can be
seen the stable behavior of the system at a motionless
situation. Once the target is reached (approximately
at frame 40) the vergence position is maintained with
little variations.
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Figure 8: Current level correlation value (black line),
mean correlation value (dotted line) and vergence an-
gle (gray line) for the first experiment
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Figure 9: Right and left structures at initial frame
(two first rows) and at frame 40 (two last rows) for
the first experiment

4.2 Tracking Moving Target

This second experiment shows the system behav-
ior when the target is slowly moving nearer and away
from the robot (figures 10 and 11). Results were ob-
tained from the following situation: the target starts
moving away from the robot approximately at frame
40. At frame 265, it begins getting closer and stops
at frame 500.

Vergence curve of figure 10 shows the smooth evo-
lution of the system to achieve the tracking of the tar-
get position. As it can be observed in this graph, the
controller generates correct responses to the different
changes in the correlation value.
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Figure 10: Current level correlation value (black
line), mean correlation value (dotted line) and ver-
gence angle (gray line) for the second experiment
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Figure 11: Right and left structures at frame 40 (two

first rows), at frame 235 (two second rows) and at
frame 490 (two last rows) for the second experiment

4.3 Response to Sudden Depth Changes

The last experiment shows the reaction of the sys-
tem to sudden changes in depth (figures 12 and 13).
Initially, the robot is situated in front of a table 4
meters away. At frame 20, it verges to the right posi-
tion, maintaining a correct configuration until frame
90, when an object invades the field of view. After 60
frames, the robot reaches the target. Finally, at frame
200, the object disappears and new vergence correc-
tion movements succeed to stabilize again at frame
250.
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Figure 12: Current level correlation value (black
line), mean correlation value (dotted line) and ver-
gence angle (gray line) for the third experiment

Figure 13: Right and left structures at frame 25 (two
first rows), at frame 160 (two second rows) and at
frame 265 (two last rows) for the third experiment

5 Summary and Conclusions

Fuzzy control for the vergence problem offers two
significant advantages: first, it facilitates the con-
struction of a non linear control surface; second, it
allows a very efficient implementation. The experi-
ments conducted show that this approach can be ef-
fectively used as a building block to expand more com-
plex oculomotor behaviors, such as gaze control and
its interactions with natural dynamics of world and
robot’s body.
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